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Abstract. Anomalous mode-converted transmission of phonons is studied based on the new
formulas for the transmitted amplitudes of phonons propagating oblique to the layer interfaces
of superlattices. A 2× 2 transfer matrix which well describes the transmission of the coupled
longitudinal and transverse phonons in an isotropic model is introduced. With the use of this
transfer matrix we can derive finite difference equations which govern the transmitted amplitudes
of both the longitudinal and transverse phonons. These equations can be solved exactly for
periodic superlattices and approximately for certain aperiodic superlattices. The results are
applied to the study of the unusual intermode oscillations in phonon transmission in both periodic
superlattices and aperiodic superlattices with variable thickness of bilayers.

1. Introduction

Despite a great deal of work on the propagation of phonons in multilayered elastic media
[1], there is still considerable interest in this topic. Specifically, we have recently reported
an unusual behaviour of the transmission characteristic of phonons in a periodic superlattice
(SL) at an oblique angle of propagation [2]. This can be seen in the vicinity of an anti-
crossing frequency in the SL dispersion relation: the wave energy oscillates back and
forth between the different polarizations as the wave propagates through the SL. These
oscillations are analogous to the Pendellösung effect for electrons and to the Borrmann
effect (the anomalous transmission effect) for x-rays [3, 4]. In the case of phonons in SLs,
the reflected and transmitted beams correspond to the different acoustic phonon modes, i.e.,
transverse (T) and longitudinal (L) and the acoustic energy of the mode converted from
the incident polarization steadily grows in spite of a small rate of mode conversion at each
interface of layers.

These results have, for the most part, been analysednumericallybased on the transfer
matrix method. The relevant transfer matrix which describes the coupled longitudinal and
transverse modes of phonons for oblique propagation is generally 6×6 for an anisotropic case
and 4× 4 in the isotropic approximation. The calculation of the transmission or reflection
properties of phonons in a SL with a finite number of periods requires the multiplication
of these matrices as many times as the number of periods. Thus the analytical calculation
to obtain this product is not straightforward but rather seems to be almost hopeless even in
the isotropic approximation [5]. Hence some different approach is required to analytically
study the phonon transmission in the multilayered systems at oblique angles.
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In the present work we consider the isotropic model and introduce a tractable 2× 2
transfer matrix rather than the 4× 4 one which is valid in the frequency bands of phonons
where the reflection rate is small. The results are particularly useful in getting physical
insight into the resonant mode conversion of phonons, that is, the relevant quantities such
as the conversion rate and associated period of oscillations can be derived analytically. A
key idea is to neglect reflected amplitudes of phonons at the boundaries of unit periods
but not those at the interface within a unit period. With this 2× 2 transfer matrix we can
derive finite difference equations which relate the transmitted amplitudes at the interfaces
of three adjacent bilayers (for a given mode of phonons). These equations are solved
exactly for a periodic superlattice and also approximately for an aperiodic superlattice with
coherent hetero-interfaces for reflection and penetration (CHIRP SL) [6]. Figure 1 shows
schematically a CHIRP SL consisting of alternating thin elastic layers of two different
materials with gradually changing periodicity. The increment of the layer thickness1D is
assumed to be common to both A and B constituent layers. This aperiodic SL has many
attractive features for device application [6]. Although this structure is highly aperiodic,
we see that phonons are transmitted perfectly for some range of frequency. Also the
transmission rates in this structure oscillate in a way different from the resonant transmission
we studied previously and the mode conversion between different phonon polarizations
exhibits an interesting behaviour.

In the next section the transfer-matrix method is introduced and an approximated 2× 2
transfer matrix which reproduces very well the exact results for phonon transmission is
defined. In section 3 finite difference equations which relate the phonon amplitudes in
the adjacent bilayers are derived and their exact solutions for periodic superlattices and
approximate solutions for aperiodic superlattices are given. To see the validity of our
results the formulas are applied to the resonant mode conversion of phonons in periodic
superlattices and also aperiodic superlattices with layers of variable thickness. Section 4
summarizes the present work.

2. Transfer matrix

We consider the coupled transverse and longitudinal vibrations in the isotropic continuum
approximation and write the displacement vector in thenth bilayer (n > 1) as follows:

u(j)n =
∑
J=T ,L

{
a
(j)

J,ne
(j)

J exp
(

ik(j)J z
(j)
n

)
+ b(j)J,nẽ(j)J exp

(
−ik(j)J z

(j)
n

)}
ei(k‖x‖−ωt)

(j = A, B) (1)

wherej discriminates the constituent materials A and B,a
(j)

J,n andb(j)J,n are the amplitudes

of the transmitted and reflected phonons of modeJ , respectively,e(j)J and ẽ(j)J are the
unit polarization vectors,k‖ and k(j)J are the wave numbers parallel and perpendicular to
the interfaces, respectively, andω is the angular frequency. The Cartesian coordinates are
settled so thatx‖ and z axes are parallel and perpendicular to the interfaces (see figure 1)
and the variablez(A)n ≡ z − zn−1 ranges from 0 toD(A)

n andz(B)n ≡ z − zn−1 −D(A)
n ranges

from 0 toD(B)
n , wherezn (z0 = 0) indicates the boundary betweennth and(n+1)th bilayers,

andD(A)
n andD(B)

n are the thicknesses of the A and B layers in thenth bilayer. Note that
equation (1) is also valid in the substrate (n = 0) if we put z−1 = −∞ andj = B.

The transfer-matrix method is a useful way to obtain the transmission and reflection
rates of phonons in SLs. For SLs consisting of crystalline layers with elastic anisotropy,
the relevant transfer matrix is a 6× 6 matrix, in general. In the present case, however, the
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Figure 1. Schematic geometry of the finite superlattice withN bilayers. The thicknesses of
the layers apply to both the periodic superlattice (with1D = 0) and the aperiodic superlattice
(with 1D 6= 0) for which the thickness of each constituent layer in a bilayer increases by1D

with increasing number of bilayers. The substrate and cap layer are assumed to have the elastic
properties of B and A layers, respectively.

transfer matrix is a 4× 4 matrix because phonons we consider are mixed T and L modes
in isotropic elastic media. The phonon amplitudesa

(j)

J,n+1 andb(j)J,n+1 in a bilayer are related

to the ones in the previous bilayera(j)J,n and b(j)J,n by multiplication by a transfer matrix.
Explicitly, 

a
(j)

T ,n+1

a
(j)

L,n+1

b
(j)

T ,n+1

b
(j)

L,n+1

 = F (j)n


a
(j)

T ,n

a
(j)

L,n

b
(j)

T ,n

b
(j)

L,n

 (n > 0) (2)

where the transfer matrixF (j)n is given by

F (j)n = 8(j)
n f

(jk)8(k)
n f

(kj) (j = A and k = B, or j = B andk = A) (3)
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8(j)
n =


exp(ik(j)T D

(j)
n ) 0 0 0

0 exp(ik(j)L D
(j)
n ) 0 0

0 0 exp(−ik(j)T D
(j)
n ) 0

0 0 0 exp(−ik(j)L D
(j)
n )

 (4)

f (kj) = [M(k)
]−1

M(j) (5)

M(j) =


cosφT sinφL − cosφT sinφL
− sinφT cosφL − sinφT − cosφL
c44

cos 2φT
sinφT

2c44 cosφL c44
cos 2φT
sinφT

−2c44 cosφL
−2c44 cosφT c11

cos 2φT
sinφL

2c44 cosφT c11
cos 2φT
sinφL

 . (6)

In these expressions8(j)
n represents the phase change of phonons associated with the

propagation of the distanceD(j)
n , φJ is the angle of transmission or reflection of the phonon

modeJ , andc11 andc44 are the stiffness constants. On the r.h.s. of equation (6), we have
omitted the superscriptj from φT , φL, c11, andc44, for simplicity. From equation (5), we
note that the matrixf (jk) satisfies

f (kj) = [f (jk)]−1
. (7)

This matrix f (jk) consists of the amplitude transmission and reflection coefficients at a
single interface for a phonon incident on thej layer from thek layer.

The formulation based on the 4× 4 transfer matrix given above is still intractable
for analytical calculations. Accordingly, we develop an approximate formula for the
transmission of phonons which utilizes the matrices of 2× 2 rather than of 4× 4. The
amplitudes we keep here are those of the transmitted phonons, i.e.,aT and aL. Thus,
equations (3) and (4) become forj = B and k = A (hereafter we omit the superscriptj
from the 2× 2 transfer matrixF̂ )

F̂n = 8̂(B)
n f̂ (BA)8̂(A)

n f̂ (AB) (8)

8̂(j)
n =

[
exp(ik(j)T D

(j)
n ) 0

0 exp(ik(j)L D
(j)
n )

]
(9)

where

f̂ (jk) =
[

[f (jk)]11 [f (jk)]12

[f (jk)]21 [f (jk)]22

]
. (10)

In this approximation, we should note that the 2×2 matrix f̂ (jk) consists of the elements of
the original 4× 4 matrixf (jk), but isnot defined by equation (6) with matrixM(j) simply
reduced to 2× 2. This means that we neglect reflected amplitudesb

(j)

J,n of phonons at the
boundaries of unit periods butnot those at the interface within a unit period. A crucial
point is that we require that the same relation as equation (7) holds for the reduced matrix
f̂ (kj), i.e.,

f̂ (kj) =
[
f̂ (jk)

]−1
(11)

or this equation defineŝf (kj). Here we note that the transfer matrixF̂n satisfies|det[F̂n]| = 1
but not det[F̂n] = 1, in general, whereas the original 4× 4 transfer matrixFn satisfies
det[Fn] = 1.
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With these matrices defined, equation (2) is reduced to[
aT,n+1

aL,n+1

]
= F̂n

[
aT,n
aL,n

]
(12)

where the amplitudesaT,n andaL,n are those in the B layer (we also omit the superscripts
of aT,n andaL,n, hereafter). The validity of the present approximation will be seen in the
next section.

3. Finite difference equations

In order to find equations satisfied by the transmitted amplitudes of T and L phonons we
need an additional equation which relates the amplitudesaJ,n+2 with aJ,n+1, i.e.,[

aT,n+2

aL,n+2

]
= F̂n+1

[
aT,n+1

aL,n+1

]
(13)

where the transfer matrix̂Fn+1 is obtained fromF̂n by replacing the layer thicknessD(j)
n with

D
(j)

n+1. In the following we develop the formula applicable to two cases, i.e., an aperiodic

CHIRP SL withD(j)

n+1 = D(j)
n +1D, (j = A and B) and a periodic SL withD(j)

n+1 = D(j)
n .

Using equations (12) and (13), we obtain two difference equations satisfied by the
amplitudes of both phonon modes

aT,n+2−
(
F̂ ′11+ F̂22

F̂ ′12

F̂12

)
aT,n+1+

(
F̂11F̂22

F̂ ′12

F̂12

− F̂ ′12F̂21

)
aT,n = 0 (14)

aL,n+2−
(
F̂11

F̂ ′21

F̂21

+ F̂ ′22

)
aL,n+1+

(
F̂11F̂22

F̂ ′21

F̂21

− F̂12F̂
′
21

)
aL,n = 0. (15)

In these equations we have written [F̂n]ij = F̂ij and [F̂n+1]ij = F̂ ′ij to save the indices. In

equation (14) we approximate the small off-diagonal elementsF̂ ′12 and F̂ ′21 which describe
the mode-converted transmission byF̂12, andF̂21, respectively. This approximation is exact
for periodic SLs and also a good approximation for the CHIRP SL as shown below. Thus,
equations (14) and (15) are summarized as

aJ,n+2− 2τJ,naJ,n+1+ δnaJ,n = 0 (16)

whereJ = T and L, and

τT,n = 1
2

(
[F̂n+1]11+ [F̂n]22

)
(17)

τL,n = 1
2

(
[F̂n]11+ [F̂n+1]22

)
(18)

δn = det[F̂n]. (19)

The explicit expression ofτJ,n is complicated (see appendix A) butδn is simply given by

δn = exp
{

i
[(
k
(A)
T + k(A)L

)
D(A)
n +

(
k
(B)
T + k(B)L

)
D(B)
n

]}
. (20)

Hence, we write

δn = ei(2α+2βn) (21)

whereα andβ are real constants. Equation (16) thus can be written as

aJ,n+2− 2ei(α+βn)εJ,naJ,n+1+ ei(2α+2βn)aJ,n = 0 (22)

whereεJ,n (J = T and L) are defined by

τJ,n ≡ εJ,nei(α+βn). (23)

We now consider two cases:
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3.1. Periodic SLs withD(A)
n = D(B)

n = D0/2

In a periodic SL1D = 0 (β = 0) and F̂n does not depend onn, so F̂n ≡ F̂ . In addition
τL,n = τT,n ≡ τ andδn ≡ δ = e2iα with 2α = (k(A)T + k(A)L + k(B)T + k(B)L )D0/2 andD0 is the
periodicity. Under these conditions it is readily seen that equation (22) has the following
analytical solutions

aT,n = X1λ
n
1 +X2λ

n
2 (24)

aL,n = Y1λ
n
1 + Y2λ

n
2 (25)

whereλ1 andλ2 are the eigenvalues of the matrix̂F , i.e.,

λ1

λ2

}
= τ ±

√
τ 2− δ (26)

and the expressions ofXi andYi (i = 1, 2) are given in appendix B.
Introducing a variableθ defined by

coshθ ≡ τδ−1/2 (27)

or equivalently

λ1

λ2

}
= eiα+θ

eiα−θ

}
(28)

the solutions (24) and (25) can be rewritten as

aJ,n = einα

sinhθ
{−aJ,0 sinh(n− 1)θ + aJ,1e−iα sinhnθ}. (29)

For an L phonon incidenceaL,0 = 1 andaT,0 = 0 (aT,0 andaL,0 are the amplitudes of the T
and L phonons in the substrate) andaL,1 = F̂22 andaT,1 = F̂12. Thus, equation (29) gives∣∣aT,n∣∣2 = ∣∣F̂12

∣∣2∣∣∣∣sinhnθ

sinhθ

∣∣∣∣2 (30)

∣∣aL,n∣∣2 = ∣∣∣∣− sinh(n− 1)θ + F̂22e−iα sinhnθ

sinhθ

∣∣∣∣2. (31)

The transmission ratet of phonons is defined by the transmitted acoustic Poynting vector
normalized by the incident acoustic flux. If we measure the transmitted flux at the B layer
with the same elastic properties as the substrate, we find for the L phonon incidence

tT ,n =
∣∣∣∣aT,naL,0

∣∣∣∣2ZLT (32)

tL,n =
∣∣∣∣aL,naL,0

∣∣∣∣2 (33)

whereZLT = sin 2φT /sin 2φL andφT andφL refer to the angles in the B layer.
We now apply the above formulas to the frequency regime where the resonant mode

conversion between the L and T polarizations occurs in a periodic superlattice. The resonant
mode conversion happens at frequencies for which the L branch of the dispersion curves in
the folded Brillouin zone attempts to overtake the T branch because of the larger velocity
of the longitudinal wave. Actually the coupling of the L and T polarizations leads to
the repulsion of the dispersion curves and the anticrossing behaviour (see figure 2). The
condition of the resonance is given by

(k
(A)
T + k(B)T )D0/2= (k(A)L + k(B)L )D0/2+ 2mπ ≡ χ (34)
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Figure 2. Dispersion relations of the coupled longitudinal (L) and transverse (T) modes in a
periodic GaAs/AlAs superlattice in the isotropic continuum approximation. The thicknessesD

(A)
n

of A layer (AlAs) andD(B)
n of B layer (GaAs) are the same (the periodicity isD0 = D(A)

n +D(B)
n

with D
(A)
n = D

(B)
n ) and vT is the transverse sound velocity in GaAs. The numerical values

of the sound velocities are 5.03×105 cm s−1 and 5.98×105 cm s−1 (L modes) and 3.03
×105 cm s−1 and 3.60×105 cm s−1 (T modes) for GaAs and AlAs, respectively, and the mass
densities are 5.36 g cm−3 for GaAs and 3.76 g cm−3 for AlAs. The propagation direction of
the L (T) mode is 45◦ (25.2◦) in the GaAs layers and 56.9◦ (30.4◦) in the AlAs layers. The
lowest anticrossing frequency is denoted byν1 andq1 andq2 are the wave numbers of the two
propagating eigenwaves atν = ν1.

or equivalently

q1− q2 = mG0 (35)

wherem is an integer,G0 = 2π/D0 is the magnitude of the reciprocal superlattice vector,
and q1 and q2 are the wave numbers of the envelope functions of the mixed T and L
phonons.

At the resonanceδ = e2iχ−2mπ i andτ takes a simple form as given by

τ = eiχε0 (36)

ε0 = f
(AB)

11 f
(AB)

22 − f (AB)12 f
(AB)

21 cosξ

f
(AB)

11 f
(AB)

22 − f (AB)12 f
(AB)

21

(37)

whereξ = (k(A)T − k(A)L )D0/2 or ξ = (k(B)T − k(B)L )D0/2. From equation (27) we find

coshθ = coshθ0 ≡ (−1)mε0. (38)
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Here we note thatε0 is real and positive because the matrix elementsf
(AB)

12 and f (AB)21
which express the intermode transmission at a layer interface are smaller than the elements
f
(AB)

11 andf (AB)22 describing the intramode transmission of phonons. Furthermore, the explicit
expressions off (AB)ij show that the productf (AB)11 f

(AB)

22 is positive andf (AB)12 f
(AB)

21 is negative
(see appendix A), so the modulus ofε0 is smaller than unity (ε0 = 0.960 in the example
below). Hence,θ0 is pure imaginary, i.e.,

θ0 = i cos−1
[
(−1)mε0

]
. (39)

Thus the equations (30) and (31) tell us that the transmission rates oscillate with the
propagation distance and the periodn0 of the oscillation between L and T polarizations
is given by

n0 = π

cos−1 ε0
. (40)

With the expressions derived above, we have plotted in figure 3 the transmission rates
of phonons for L phonon incidence and see how the transmitted energy is converted to the
T phonons with the number of bilayers. In this numerical example the materials for A and
B layers are AlAs and GaAs, respectively, and the incident angle of the L (T) phonon in
the GaAs layer is 45◦ (25.2◦) and the frequencyν1 which satisfiesν1D0/vT = 2.15 (vT
is the transverse sound velocity in GaAs) is chosen (see figure 2). The bold line indicates
the result derived from equation (30) which coincides well with the dots calculated with
the exact 4× 4 transfer matrix. The period of oscillation deduced from equation (40) is
n0 = 11.02. This value also agrees with the period of the mode-converted transmission
shown in figure 3.

Equation (30) can be interpreted more physically as follows. For most values of the
frequencyν, there exist two propagating superlattice modes whose frequency matches that
of the incident wave. Let us denote the wave numbers of these modes byq1 and q2.
Provided that these two wave numbers are far removed from points at which anti-crossing
occurs, one of these modes will have essentially the character of an L wave and the other
a T wave. Then the incident L wave will excite the L wave with a large amplitude and the
T wave with a much smaller amplitude and vice versa. However, for an incident frequency
in the vicinity of an anti-crossing frequencyν1 in figure 2, for instance, the difference
between the wave numbersq1 andq2 is small and beats occur by the interference between
the two transmitted eigenwaves exp(iq1D0) and exp(iq2D0) of the system. This means that
equation (30) should be equivalent to∣∣aT,n∣∣2 = ∣∣F̂12

∣∣2 sin2[n(q1− q2)D0/2]

sin2[(q1− q2)D0/2]
(41)

that is,θ = i(q1− q2)D0/2 and cos[(q1− q2)D0/2] = ε0. After the waves have propagated
a number of bilayersn such that|q1 − q2|nD0 = π the waves will combine so the L
components cancel and the T components add. This corresponds to the distance for complete
energy transfer to T polarization. Therefore the energy returns to the L wave after travelling
n0 bilayers, where

n0 = 2π

|q1− q2|D0
. (42)

It follows from these considerations that the transmission rate of the T component of the
wave varies astT ,n ∼ sin2(πn/n0)/ sin2(π/n0) and the transmission rate of the L component
varies astL,n ∼ cos2(πn/n0)/ sin2(π/n0). This explains the oscillations in the transmission
rate exhibited in figure 3.
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Figure 3. Transmission rate of transverse (T) phonons versus number of bilayers in a periodic
GaAs/AlAs superlattice. The solid line is the calculation with the approximated 2× 2 transfer
matrix or equivalently with the solution of the finite differential equation and the dots are the
exact results based on the 4× 4 transfer matrix. Longitudinal phonon incidence is assumed
and the frequency chosen isν = ν1 at which the condition for the resonant mode conversion is
satisfied, i.e.,ν1D0/vT = 2.15. The other parameters are the same as in figure 2.

3.2. Aperiodic case with1D 6= 0

We consider an aperiodic CHIRP SL shown in figure 1, where the layer thickness increases
by a small amount1D, orD(j)

n+1 = D(j)
n +1D (j = A and B). In this case the coefficients

α andβ are given by

2α = (k(A)T + k(B)T + k(A)L + k(B)L )(D0/2−M1D) (43)

2β = (k(A)T + k(B)T + k(A)L + k(B)L )1D. (44)

In equation (43)M = N/2 (N is the total number of bilayers) and we have chosen
D
(A)
M = D

(B)
M = D0/2, or 2ν1D

(A)
M /vT = 2ν1D

(B)
M /vT = ν1D0/vT = 2.15. This

is a condition that the resonant mode conversion occurs in the corresponding periodic
superlattice. Figure 4 shows the transmission rate of T phonons versus the number of
bilayers obtained by numerically solving the finite difference equation (22) (solid line)
together with the exact results (dots) obtained from the original 4× 4 transfer matrix. Here
the A and B layers are again AlAs and GaAs, respectively, and the total number of bilayers is
N = 2M = 100. In addition we have chosenν11D/vT = 2.15×10−3 or 21D/D0 = 0.002.
Both the magnitude and period of the oscillations are reproduced very well as for the case
of the periodic SL considered above and this again validates equation (22) based on the
2× 2 transfer matrix we derived. The inset also exhibits the L phonon transmission rate
obtained by solving the difference equation (22) forJ = L, which varies astT ,n + tL,n = 1
is satisfied.



6800 H Kato and S Tamura

Figure 4. Transmission rate of transverse (T) phonons versus number of bilayers in a CHIRP
(coherent hetero-interfaces for reflection and penetration) superlattice consisting of AlAs (A)
and GaAs (B) layers. The incident phonon is longitudinal (L) polarization and the angle of
incidence in the GaAs substrate is 45◦. The dots are the exact results calculated with the 4× 4
transfer matrix and the solid line shows the transmission rates calculated by solving numerically
the finite difference equation. The inset shows the transmission rate of L phonons calculated
by solving the finite difference equation. This figure is forν11D/vT = 2.15× 10−3 and
2ν1D

(A)
M /vT = 2ν1D

(B)
M /vT = 2.15 (= ν1D0/vT with vT the transverse sound velocity in

GaAs) at theMth (M = 50) bilayer, i.e., the resonance layer of the superlattice.

Now the characteristic behaviours of the transmission rates shown in figure 4 can be
understood as follows. Suppose, for example, the L wave is incident on a superlattice that
has a repeat distance such that the resonance condition for buildup of a T wave isnot
satisfied at the front of the structure. If the repeat distance slowly increases with distance
into the superlattice, a region will eventually be reached in which the conversion condition
is satisfied. In this region the energy in the wave will oscillate back and forth between the
L and T polarizations.

Unfortunately, it is not straightforward to solve analytically the finite difference
equation (22) for this aperiodic structure. Here we give only an approximate solution
which is found heuristically, i.e.,

aJ,n =
(
XJ,1

n∏
k=1

ρJ,k−1+XJ,2
n∏
k=1

σJ,k−1

)
exp

[
i

(
α − 3

2
β

)
n+ i

2
βn2

]
(n > 1) (45)

where

ρJ,n
σJ,n

}
= εJ,n ±

(
ε2
J,n − eiβ

)1/2
(46)

and the expressions of the coefficientsXJ,1 andXJ,2 are given in appendix B.
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In these equationsρJ,n andσJ,n are the solutions of

x2
n − 2εJ,nxn + eiβ = 0. (47)

The amplitude (45) becomes the exact solution of equation (22) ifρJ,n and σJ,n are the
solutions of

xn+1xn − 2εJ,nxn + eiβ = 0. (48)

Again for an L phonon incidence, i.e.,aT,0 = 0 andaL,0 = 1, equation (45) leads to
the squared amplitude of T phonons in thenth bilayer as

∣∣aT,n∣∣2 =
∣∣∣∣∣ F̂12

ρT,0− σT,0

∣∣∣∣∣
2 [ n∏

k=1

∣∣∣ρT,k−1

∣∣∣2+ n∏
k=1

∣∣∣σT,k−1

∣∣∣2− 2 Re
( n∏
k=1

ρT,k−1σ
∗
T ,k−1

)]

=
∣∣∣∣∣ F̂12

ρT,0− σT,0

∣∣∣∣∣
2{ n∏

k=1

∣∣∣ρT,k−1

∣∣∣2+ n∏
k=1

∣∣∣σT,k−1

∣∣∣2
−2 cos

[ n∑
k=1

(ϕT,k−1− ψT,k−1)

]}
(49)

whereϕT,k andψT,k are the phases ofρT,k and σT,k, respectively, and we have used the
fact that |ρJ,k||σJ,k| = 1. The transmission rate of T phonons derived from equation (49)
has also been plotted in figure 5(a) by a bold line. The parameters assumed for this figure
are the same as those for figure 4. Here we note that the sum of the first and second terms
in the parenthesis grows with increasingn and the third term oscillates with respect ton.
However, under the present approximation the amplitude of the oscillation is independent
of n. Although the values of the local extrema of the approximated and exact transmission
rates do not coincide, the periods of the oscillation (which depend on the distance from
the substrate and change locally) agree very well. More precisely, for a small variation of
the phase differenceϕT,k − ψT,k with respect tok we can define the local period̃n of the
oscillation at thenth bilayer as

ñ = 2π

|ϕT,n − ψT,n| =
π

cos−1 |εT,n| (50)

where we have used the fact that the phase ofεT,n is very close toπ and neglected its
small imaginary part (note thatεT,n is real at the resonance layern = M if τT,n = Tr[F̂n]/2,
see equation (17)). The periods of oscillations are plotted in figure 5(b) for comparison.
Dots are estimated from figure 4 and the solid line is the local periodñ. The period of
oscillationsñ becomes maximum at the resonance layer.

4. Summary

In this article we have given an approximated formula for determining the transmission
amplitudes of the coupled L and T phonons propagating obliquely in a superlattice. This
is done in the isotropic model by deriving finite difference equations based on the transfer
matrices approximated to be 2×2 from the original ones of 4×4. The formula derived has
been applied to the periodic SL, specifically to the frequencies for which the resonant mode
conversion between different phonon polarizations occurs. The calculated transmission
rates coincide well with the exact numerical results for both the magnitude and period of
oscillations that are characteristic of the mode-converted transmission.
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Figure 5. (a) Transmission rate of transverse (T) phonons versus number of bilayers in a
CHIRP superlattice. The bold line is calculated from the approximated solution (49) of the
finite difference equation and the thin line shows the mean values obtained by neglecting the
last term of equation (49). The dots connected by a dotted line are the exact results calculated
from the 4×4 transfer matrix (the same as the dots in figure 4). The conditions and parameters
assumed are the same as in figure 4. (b) Period of oscillations of the T phonon transmission
rate. The solid line is calculated from an approximated formula (50) and the dots are the values
estimated from the numerical transmission rate shown in figure 4.n0 = 11.02 is the period of
the oscillations in the periodic superlattice withD(A)

n = D(B)
n = D0/2 (figure 3).

Our formula has also been applied to an aperiodic SL called the CHIRP SL for which the
period slowly increases (or decreases) with distance. Although the finite difference equations
give the results which reproduce the exact transmission rates quantitatively, the approximate
solutions that we found heuristically explain the transmission rates only semiquantitatively.
For the CHIRP structure we consider, there should be better approximate solutions of the
finite difference equations than the ones described in the present work. It would be an
interesting mathematical problem to find such a solution.

Another interesting aperiodic multilayered system studied recently is the graded-
composition multi-quantum well which can be used for optoelectronic devices [7, 8]. In
these structures the thickness of the B layer changes according toD(B)

n = (n−0.5)D2
AB/Ls

(n = 1, 2, . . . , Ls/DAB), whereDAB is the thickness of a bilayer andLs is the system
size. The transmission and associated mode conversion of phonons propagating in these
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structures can also be analysed by the formulas derived in the present work.
It should be noted that the formulas obtained here are valid in the frequency bands of

phonons where the reflection rate of phonons is small. For oblique phonon propagation
there also exist the frequency regions where the transmission rates of both L and T phonons
are small. Such simultaneous frequency gaps of both L and T phonons can be seen to
be distributed quite widely in theν–k‖ plane of periodic superlattices [5, 9]. Hence in
these frequency regions there should be similar approximate formulas valid for the reflected
amplitudes of phonons, which can be used to analyse the intermode Bragg reflections [10–
14]. The study on this topic will appear elsewhere.

Finally, we remark that in the real anisotropic superlattices the anomalous mode-
converted transmission of phonons is more complicated due to the coupling to both
transverse modes of phonons. In this case the mode conversion between two transverse
modes are also possible in addition to the mode conversions from the longitudinal to two
transverse modes and vice versa. However, as far as we are concerned with the phonon
propagation in a saggital plane with mirror symmetry, the resonant mode conversion only
between the longitudinal mode and single transverse branch as studied in the present work
is possible.
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Appendix A.

The explicit expressions for the diagonal elements of the transfer matrixF̂n are given by[
F̂n
]

11 = exp
(

ik(B)T D(B)
n

)[
f
(AB)

11 f
(AB)

22 exp
(

ik(A)T D(A)
n

)
− f (AB)12 f

(AB)

21 exp
(

ik(A)L D(A)
n

)]/
d (A1)[

F̂n
]

22 = exp
(

ik(B)L D(B)
n

)[
f
(AB)

11 f
(AB)

22 exp
(

ik(A)L D(A)
n

)
− f (AB)12 f

(AB)

21 exp
(

ik(A)T D(A)
n

)]/
d (A2)

where

d = f (AB)11 f
(AB)

22 − f (AB)12 f
(AB)

21 . (A3)

If we assume that A and B layers are different only in their mass densities (elastic constants
are the same), the expressions off

(AB)
ij take the simple forms

f
(AB)

11 = (sin 2φ(A)T + sin 2φ(B)T

)/
4 cosφ(A)T sinφ(B)T (A4)

f
(AB)

12 = κ
(

cos 2φ(A)T − cos 2φ(B)T

)/
4 cosφ(A)T sinφ(B)L (A5)

f
(AB)

21 = −
(

cos 2φ(A)T − cos 2φ(B)T

)/
4 cosφ(A)L sinφ(B)T (A6)

f
(AB)

22 =
(

sin 2φ(A)L + sin 2φ(B)L

)/
4 cosφ(A)L sinφ(B)L (A7)

whereκ = sin2 φ
(A)
L / sin2 φ

(A)
T = sin2 φ

(B)
L / sin2 φ

(B)
T .
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Appendix B.

The coefficientsXi andYi (i = 1, 2) of equations (24) and (25) are given by

X1 = (F̂11− λ2)aT,0+ F̂12aL,0

λ1− λ2
(B1)

X2 = (λ1− F̂11)aT,0− F̂12aL,0

λ1− λ2
(B2)

Y1 = (F̂22− λ2)aL,0+ F̂21aT,0

λ1− λ2
(B3)

Y2 = (λ1− F̂22)aL,0− F̂21aT,0

λ1− λ2
. (B4)

In the above equations (B1)–(B4)aT,0 andaL,0 are the amplitudes of the T and L phonons
in the substrate. Also the coefficientsXJ,1 andXJ,2 of equation (45) are given by

XJ,1 = aJ,1− σ̃J aJ,0
ρ̃J − σ̃J (B5)

XJ,2 = ρ̃J aJ,0− aJ,1
ρ̃J − σ̃J (B6)

whereaJ,0 is the amplitude of theJ -mode phonon in the substrate and

ρ̃J
σ̃J

}
= ρJ,0
σJ,0

}
ei(α−β). (B7)
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